6.1 矩阵运算
6.1.1 Kronecker积
设\(A=(a_{ij})_{m \times n}, \, B=(b_{ij})_{p \times q}\),则称矩阵\(C=(a_{ij}B)_{mp \times nq}\)为矩阵A和矩阵B的Kronecker积,记为\(C=A\otimes B\)。
性质:
- \((A_1 \otimes B_1)(A_2 \otimes B_2)=(A_1A_2)\otimes(B_1B_2)\)
证:
不妨记\(A_1=(a_{ij}^{(1)})=\begin{pmatrix} a_{1 \cdot }^{(1)} \\ a_{2 \cdot}^{(1)} \\ \vdots \\ a_{m \cdot}^{(1)} \end{pmatrix},\, A_2=(a_{ij}^{(2)})=\begin{pmatrix} a_{\cdot 1}^{(2)} & a_{\cdot 2}^{(2)} & \cdots & a_{\cdot n}^{(2)} \end{pmatrix}\),则
\[ \begin{aligned} (A_1 \otimes B_1)(A_2 \otimes B_2)&=(a_{ij}^{(1)}B_1)(a_{ij}^{(2)}B_2) \\ &=(a_{i \cdot}^{(1)}a_{\cdot j}^{(2)}B_1B_2) \\ &= (a_{i \cdot}^{(1)}a_{\cdot j}^{(2)})\otimes (B_1B_2) \\ &=(A_1A_2)\otimes (B_1B_2) \end{aligned} \tag{6.1} \]
这里进行了简写,注意只要矩阵运算中出现小写字母,代表该矩阵的元素
- \((A\otimes B)'=A' \otimes B'\)
证:
\[ \begin{aligned} (A\otimes B)'&=(a_{ij}B)' \\ &= (a_{ji}B') \\ &= A' \otimes B' \end{aligned} \tag{6.2} \]
- \((A\otimes B)^{-1}=A^{-1} \otimes B^{-1}\)
证:
\[ \begin{aligned} (A \otimes B) \cdot (A^{-1} \otimes B^{-1})&=(AA^{-1}) \otimes (BB^{-1})\\ &=I \otimes I\\ &=I\\ \Rightarrow (A \otimes B)^{-1} &=A^{-1} \otimes B^{-1} \end{aligned} \tag{6.3} \]
- 若A,B均为方阵,则\(tr(A\otimes B)=tr(A) \cdot tr(B)\)
证:
\[ \begin{aligned} tr(A\otimes B)&=tr(a_{ij}B) \\ &= \sum_{i}\sum_{j}a_{ii}b_{jj} \\ &= \sum_{i}a_{ii}\sum_{j}b_{jj} \\ &= tr(A) \cdot tr(B) \end{aligned} \tag{6.4} \]
- \(||A \otimes B||=||A|| \cdot ||B||\)
证:
\[ \begin{aligned} ||A \otimes B||=... \end{aligned} \tag{6.4} \]
- \(rank(A \otimes B)=rank(A) \cdot rank(B)\)
证:
不妨记矩阵\(A_{m\times n}\)前p行为极大线性无关组,矩阵\(B_{h\times k}\)前q行为极大线性无关组,对\(A\otimes B\)进行行化简,如下所示:
\[ \begin{aligned} A \otimes B = &\begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{pmatrix}\\ \overset {a} \Rightarrow &\begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ \vdots & \vdots & \vdots & \vdots \\ a_{p1}B & a_{p2}B & \cdots & a_{pn}B \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \\ \end{pmatrix}\\ \overset {b} \Rightarrow &\begin{pmatrix} a_{11}b_{11} & \cdots & a_{11}b_{1k} & \cdots & a_{1n}b_{11} & \cdots & a_{1n}b_{1k}\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{11}b_{q1} & \cdots & a_{11}b_{qk} & \cdots & a_{1n}b_{q1} & \cdots & a_{1n}b_{qk} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{p1}b_{11} & \cdots & a_{p1}b_{1k} & \cdots & a_{pn}b_{11} & \cdots & a_{pn}b_{1k}\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{p1}b_{q1} & \cdots & a_{p1}b_{qk} & \cdots & a_{pn}b_{q1} & \cdots & a_{pn}b_{qk} \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \end{pmatrix} \end{aligned} \tag{6.5} \]
6.1.2 拉直
设\(A=(a_1,...,a_n)\)是一个\(m \times n\)矩阵,其中\(a_i=(a_{1i},...,a_{mi})'\)。将矩阵A按列向量\(a_1,...,a_n\)依次排成一个\(mn \times 1\)的向量,即\(vec(A)=\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}\),称\(vec(A)\)为矩阵A的按列拉直运算,同理,记\(rvec(A)\)为矩阵A的按行拉直运算。显然,有\(rvec(A)=(vec(A'))'\)。
- \(tr(AB)=(vec(A'))'vec(B)\)
证:
\[ \begin{aligned} tr(AB)&= \sum_i a_{i \cdot}b_{\cdot i} \\ &= (a_{i \cdot})(b_{\cdot i}) \\ &= rvec(A)vec(B) \\ &= (vec(A'))'vec(B) \end{aligned} \tag{6.6} \]
第二行表示元素为A的行向量的行向量与元素为B的列向量的列向量的内积
- \(vec(ABC)=(C' \otimes A)vec(B)\)
证:
令\(C_{m \times n}=(c_{ij})=(c_1,...,c_n), \, B=(b_1,...,b_m)\),则
\[ \begin{aligned} (C' \otimes A)vec(B)&= \begin{pmatrix} c_{11}A & c_{21}A & \cdots & c_{m1}A \\ c_{12}A & c_{22}A & \cdots & c_{m2}A \\ \vdots & \vdots & \ddots & \vdots \\ c_{1n}A & c_{2n}A & \cdots & c_{mn}A \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \\ &= \begin{pmatrix} A\sum (c_{i1} b_i) \\ A\sum (c_{i2} b_i) \\ \vdots \\ A\sum (c_{in} b_i) \end{pmatrix} \\ &= \begin{pmatrix} ABc_1 \\ ABc_2 \\ \vdots \\ ABc_n \end{pmatrix} \\ &= vec(ABC) \end{aligned} \tag{6.6} \]
- \(tr(ABC)=(vec(A'))'(I \otimes B)vec(C)\)
证:
令\(A=\begin{pmatrix}a_{1 \cdot} \\ a_{2 \cdot} \\ \vdots \\ a_{m \cdot}\end{pmatrix}\)
\[ \begin{aligned} tr(ABC)&=tr(AB \cdot C) \\ &= [vec((AB)')]'vec(C) \\ &= rvec(AB)vec(C) \\ &= \begin{pmatrix}a_{1 \cdot}B & a_{2 \cdot}B & \cdots & a_{m \cdot}B \end{pmatrix} vec(C) \\ &= \begin{pmatrix}a_{1 \cdot} & a_{2 \cdot} & \cdots & a_{m \cdot} \end{pmatrix} diag\{B, B , \cdots ,B\}vec(C) \\ &=rvec(A)(I \otimes B)vec(C) \\ &= (vec(A'))'(I \otimes B)vec(C) \end{aligned} \tag{6.7} \]
6.1.3 减号逆与加号逆
6.1.3.1 减号逆
对于一个\(m \times n\)的矩阵A,一切满足方程组\(AXA=A\)的矩阵X称为矩阵A的广义逆,记为\(A^{-}\),也称减号逆。
- 减号逆不唯一
证:
令A是一个\(m \times n\)矩阵,rank(A)=r, 若\(A=P \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} Q\),P和Q分别为m阶、n阶矩阵,则
\[ A^{-} = Q^{-1} \begin{pmatrix} I_r & B \\ C & D \end{pmatrix} P^{-1} \tag{6.8} \]
其中B,C,D为适当阶数的任意矩阵。
- 对任意矩阵A,有\(A'A(A'A)^{-}A'=A',\;A(A'A)^{-}A'A=A\)
证:
令\(A'A(A'A)^{-}A'=X\),\(A(A'A)^{-}A'A=Y\),则可得:
\[ \begin{aligned} A'A(A'A)^{-}A'&= X \\ A'A(A'A)^{-}A'A &= XA \\ A'A &= XA \\ (A'-X)A &= 0 \\ A'(A-X') &= 0 \\ \end{aligned} \tag{6.9} \] 故\(X=A'\)必为该方程的解,即\(A'A(A'A)^{-}A'=A'\)。
\[ \begin{aligned} A(A'A)^{-}A'A &= Y \\ A'A(A'A)^{-}A'A &= A'Y \\ A'A &= A'Y \\ A'(A-Y) &= 0 \end{aligned} \tag{6.10} \]
故\(Y=A\)必为方程的解,即\(A(A'A)^{-}A'A=Y\)。
设相容线性方程组\(Ax=b\),则
- 对任一广义逆\(A^{-}, \, x=A^{-}b\)必为解
证:
\[ \begin{aligned} Ax&=b \\ AA^{-}Ax&=AA^{-}b \\ Ax&=AA^{-}b \\ A(x-A^{-}b)&=0 \\ x&=A^{-}b \end{aligned} \tag{6.11} \]
- 齐次方程组\(Ax=0\)的通解为\(x=(I-A^-A)z\),z为任意向量,\(A^-\)为任一固定的广义逆
证:
\[ \begin{aligned} A &= AA^{-}A \\ Az &= AA^{-}Az \\ A(Iz-A^{-}Az) &= 0 \\ A(I-A^{-}A)z &= 0 \end{aligned} \tag{6.12} \]
- \(Ax=b\)的通解为\(x=A^-b+(I-A^-A)z\),z为任意向量,\(A^-\)为任一固定的广义逆
证:
由上述可得,\(Ax=b\)的通解为\(Ax=b\)的特解加上\(Ax=0\)的通解,即\(x=A^{-}b+(I-A^{-}A)z\)
6.1.3.2 加号逆
设A为任一矩阵,若矩阵X满足\((1)AXA=A;\;(2)XAX=X; \; (3)(AX)'=AX; \; (4)(XA)'=XA\),则称X为A的Moore-Penrose广义逆,记为\(A^+\),也称加号逆或伪逆。
- 每个矩阵均存在加号逆且唯一
存在性,证:
设A是一个\(m \times n\)矩阵,\(rank(A)=r\),若A的奇异值分解\(A=U\begin{pmatrix} \Lambda_r & 0 \\0 & 0 \end{pmatrix}V'=UDV'\),U和V分别为m阶、n阶正交矩阵。令\(X=V\begin{pmatrix} \Lambda_r^{-1} & 0 \\0 & 0 \end{pmatrix}U'=V\tilde DU'\),则
\[ \begin{aligned} &AXA=(UDV')(V\tilde D U')(UDV')=UDV'=A \\ &XAX= (V\tilde D U')(UDV')(V\tilde D U')=V\tilde D U'=X \\ &(AX)'=(UDV'V\tilde D U')'=(UU')'=UU'=UDV'V\tilde D U'=AX\\ &(XA)'=(V\tilde D U'UDV')'=(VV')'= VV'=VDU'U\tilde D V'=XA \end{aligned} \tag{6.13} \]
即\(X=A^+\)。
唯一性,证:
令X,Y均满足伪逆的四个条件,即X,Y均为A的加号逆
\[ \begin{aligned} X&=XAX\\ &=X(AX)' \\ &=XX'A' \\ &=XX'(AYA)' \\ &=X(AX)'(AY)' \\ &=XAX(AY) \\ &=XAY \\ &=(XA)'Y \\ &=A'X'Y \\ &=A'X'(YAY) \\ &=A'X'(YA)'Y \\ &=A'X'A'Y'Y \\ &=(AXA)'Y'Y \\ &=A'Y'Y \\ &=(YA)'Y \\ &=YAY \\ &=Y \end{aligned} \tag{6.14} \]
- \(A^+=A'(AA')^+=(A'A)^+A'\)
证:
令矩阵A的秩为r,则其奇异值分解为\(A=U\begin{pmatrix} \Lambda_r & 0 \\ 0 & 0 \end{pmatrix}V'\),对应的有\(AA'=U\begin{pmatrix} \Lambda_r^2 & 0 \\ 0 & 0 \end{pmatrix}U', \; A'A=V\begin{pmatrix} \Lambda_r^2 & 0 \\ 0 & 0 \end{pmatrix}V'\)。
\[ \begin{aligned} A'(AA')^+ &= A'U\begin{pmatrix} \Lambda_r^{-2} & 0 \\ 0 & 0 \end{pmatrix}U' \\ &=V\begin{pmatrix} \Lambda_r & 0 \\ 0 & 0 \end{pmatrix}U'U\begin{pmatrix} \Lambda_r^{-2} & 0 \\ 0 & 0 \end{pmatrix}U' \\ &=V\begin{pmatrix} \Lambda_r^{-1} & 0 \\ 0 & 0 \end{pmatrix}U' \\ &=A^+ \end{aligned} \tag{6.15} \]
同理,\(A^+=(A'A)^+A'\)。
6.1.4 分块矩阵
将矩阵\(A_{n \times p}\)分成四块:\(A=\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}\),即为分块矩阵。
若A为方阵,\(A_{11}\)也为方阵,则
- 当\(|A_{11}| \neq 0\)时,\(|A|=|A_{11}||A_{22 \cdot 1}|\),其中\(A_{22 \cdot 1}=A_{22}-A_{21}A_{11}^{-1}A_{12}\)
证:
令分块矩阵左乘\(\begin{pmatrix} I & 0 \\ -A_{21}A_{11}^{-1} & I\end{pmatrix}\),右乘\(\begin{pmatrix} I & -A_{11}^{-1}A_{12} \\ 0 & I\end{pmatrix}\),可得
\[ \begin{pmatrix} I & 0 \\ -A_{21}A_{11}^{-1} & I\end{pmatrix}\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}\begin{pmatrix} I & -A_{11}^{-1}A_{12} \\ 0 & I\end{pmatrix}=\begin{pmatrix} A_{11} & 0 \\ 0 & A_{22 \cdot 1} \end{pmatrix} \tag{6.16} \]
其中\(A_{22 \cdot 1}=A_{22}-A_{21}A_{11}^{-1}A_{12}\)。等式左右两边取行列式即可。
- 当\(|A_{22}| \neq 0\)时,\(|A|=|A_{11 \cdot 2}||A_{22}|\),其中\(A_{11 \cdot 2}=A_{11}-A_{12}A_{22}^{-1}A_{21}\)。
证:
同理。
若A为可逆方阵,\(A_{11}\)和\(A_{22}\)均为方阵,则
- 当\(|A_{11}|\neq 0\)时,\(A^{-1}=\begin{pmatrix} A_{11}^{-1} + A_{11}^{-1}A_{12}A_{22 \cdot 1}^{-1}A_{21}A_{11}^{-1} & -A_{11}^{-1}A_{12}A_{22 \cdot 1}^{-1} \\ -A_{22 \cdot 1}^{-1}A_{21}A_{11}^{-1} & A_{22\cdot 1}^{-1} \end{pmatrix}\)。
证:
由式(6.16)可知,
\[ \begin{aligned} \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22 \cdot 1} \end{pmatrix}^{-1}&=\begin{pmatrix} I & -A_{11}^{-1}A_{12} \\ 0 & I\end{pmatrix}^{-1}\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}^{-1}\begin{pmatrix} I & 0 \\ -A_{21}A_{11}^{-1} & I\end{pmatrix}^{-1} \\ \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}^{-1}&=\begin{pmatrix} I & -A_{11}^{-1}A_{12} \\ 0 & I\end{pmatrix}\begin{pmatrix} A_{11} & 0 \\ 0 & A_{22 \cdot 1} \end{pmatrix}^{-1}\begin{pmatrix} I & 0 \\ -A_{21}A_{11}^{-1} & I\end{pmatrix} \\ &=\begin{pmatrix} I & -A_{11}^{-1}A_{12} \\ 0 & I\end{pmatrix}\begin{pmatrix} A_{11}^{-1} & 0 \\ 0 & A_{22 \cdot 1}^{-1} \end{pmatrix}\begin{pmatrix} I & 0 \\ -A_{21}A_{11}^{-1} & I\end{pmatrix} \\ &= \begin{pmatrix} A_{11}^{-1} + A_{11}^{-1}A_{12}A_{22 \cdot 1}^{-1}A_{21}A_{11}^{-1} & -A_{11}^{-1}A_{12}A_{22 \cdot 1}^{-1} \\ -A_{22 \cdot 1}^{-1}A_{21}A_{11}^{-1} & A_{22\cdot 1}^{-1} \end{pmatrix} \end{aligned} \tag{6.17} \]
- 当\(|A_{22}|\neq 0\)时,\(A^{-1}=\begin{pmatrix} A_{11 \cdot 2}^{-1} & -A_{11 \cdot 2}^{-1}A_{12}A_{22}^{-1} \\ -A_{22}^{-1}A_{21}A_{11\cdot 2}^{-1} & A_{22\cdot 1}^{-1}+ A_{22}^{-1}A_{21}A_{11 \cdot 2}^{-1}A_{12}A_{22}^{-1} \end{pmatrix}\)。
证:
同理。
- 当\(|A_{11}|\neq 0, \;|A_{22}|\neq 0\)时,\(A^{-1}=\begin{pmatrix} A_{11 \cdot 2}^{-1} & -A_{11}^{-1}A_{12}A_{22 \cdot 1}^{-1} \\ -A_{22}^{-1}A_{21}A_{11\cdot 2}^{-1} & A_{22\cdot 1}^{-1} \end{pmatrix}\)。
证:
同理。